

NCSxE17x(单色多彩系列) 的散热设计

目录

1. 前言	2
2. 适用产品	2
3. 散热设计	3
4. 热阻	5
5. 结点温度	8
6. 温度评价	10
7. 最后	13

本应用指南中记载的型号 NCSCE17A、NCSBE17A、NCSEE17A、NCSEE17A-V1、NCSEE17A-V1L1、NCSGE17A、NCSGE17A-V1、NCSGE17A-V1L1、NCSAE17A、NCSAE17A-V1、NCSRE17A、NCSRE17A、NCSRE17A、NCSWE17A、NCSWE17A、NCSWE17A、NCSWE17A-V1和 NCSxE17x 是日亚产品的型号,和有(或可能有)商标权的其他公司产品不同(不类似)、也没有任何关联。

日本日亚化学工业株式会社

http://www.nichia.co.jp

491 Oka, Kaminaka-Cho, Anan-Shi, TOKUSHIMA 774-8601, JAPAN Phone: +81-884-22-2311 Fax: +81-884-21-0148

本文包括暂定内容, 日亚公司有权不经公告对其进行修改。

1. 前言

LED 的散热设计非常重要,不仅决定了 LED 的光通量和正向电压等光学、电学特性,还和 LED 的寿命密切相关。此外,在 LED 的热评价中,必须在实际使用环境/条件下对 LED 的结点温度 (TJ)进行充分管控。

为了充分发挥日本日亚化学工业株式会社(以下简称为"日亚")制造的单色多彩系列 LED 的性能,本应用指南将对散热设计中的注意点和温度评价方法进行介绍。

2. 适用产品

本应用指南适用于日亚单色多彩 LED 和白色 LED (以下简称为"NCSxE17x")。详细如表 1 所示。

表 1. 适用产品

型号	发光色	分档	外观※1	I _F max (mA)	V _F typ. (V)	T _J max/ T _T max	热阻(typ./max) (℃/W)※2
NCSCE17A	皇家蓝色 (无荧光体)	V2		700	3.0	135/150	0.5/1.0
NCSBE17A	蓝色 (无荧光体)	W		700	3.0	135/150	0.8/1.6
NCSEE17A NCSEE17A-V1	天蓝色 (有荧光体)	Ei2ci4		700	3.0 2.95	135/150	0.5/1.0
NCSEE17A-V1L1	蓝绿色 (无荧光体)	Сс		700	2.6	135/150	1.0/2.0
NCSGE17A NCSGE17A-V1	绿色 (有荧光体)	G013	→	550	3.0 2.95	135/135	0.5/1.0
NCSGE17A- V1L1	绿色 (无荧光体)	G0f		700	2.55	135/150	1.0/2.0
NCSGE17A NCSGE17A-V1	青柠色 (有荧光体)	G014	\	700	3.0 2.95	135/150	0.5/1.0
NCSAE17A NCSAE17A-V1	橙色 (有荧光体)	Lea	\	700	3.0 2.95	135/150	0.5/1.0
NCSRE17A NCSRE17A-V1	亮红色 (有荧光体)	R021	•	700	3.0 2.95	135/150	0.5/1.0
NCSRE17A NCSRE17A-V1	红色 (有荧光体)	Rp	•	700	3.0 2.95	135/150	0.5/1.0
NCSRE17A-V1	深红色 (有荧光体)	Rpr	\	700	2.95	135/150	0.5/1.0
NCSWE17A NCSWE17A-V1	白色 (有荧光体)	sm507 R70		700	3.0 2.95	135/150	0.5/1.0

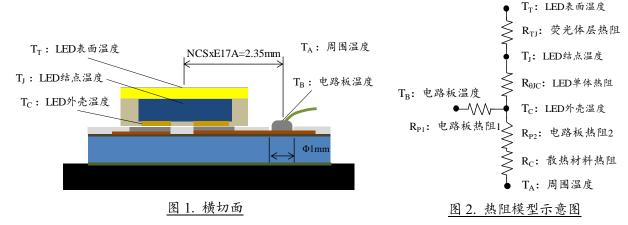
^{※1} 型号 NCSxE17x 的外形尺寸都为 1.7mm×1.7mm。

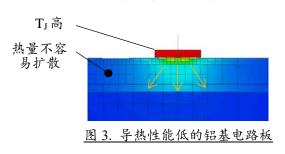
^{※2} 热阻(R_{eJC})是指从LED 芯片到金属电极间的热阻。 另外型号 NCSBE17A、NCSEE17A-V1L1、NCSGE17A-V1L1 因为芯片和其他同系列 LED 不同, 所以热阻不同,比其他型号品更大。

3. 散热设计

3.1 热阻模式和相关术语

将 NCSxE17x 安装在铝基电路板上并使用散热器散热时的模组横切面如图 1 所示,热阻模型示意图如图 2 所示。另外相关散热设计的术语的说明和其主要注意点请参照表 2。




表 2. 术语说明和主要注意点

术语	符号	术语说明和主要注意点
LED 表面温度	T_{T}	代表 LED 的发光面温度。
LED 结点温度	$T_{ m J}$	代表 LED 芯片的温度。NCSxE17x 的结点温度的绝对最大值额定值为 135℃。但是为了提高 LED 长期使用的可靠性,最好让结点温度不超过 100℃。
LED 单体热阻	$R_{ heta JC}$	代表从 LED 芯片到金属电极的热阻。此数值是根据 JESD51 测量、计算的。NCSxE17x 的热阻非常小,最大只有 2.0℃/W。
LED 外壳温度	T_{C}	代表 LED 背面的金属电极的温度。NCSxE17x 在构造上很难在电路板 安装状态下对此温度进行测量,但是可以通过热模拟取得。
电路板温度	T_{B}	代表 LED 附近的电路板表面的温度。NCSxE17x 因为很难对焊接部的温度直接测量,所以需要测量如图 1 所示的 LED 附近电路板表面的铜箔处(T _B 测量点)温度代替。
电路板热阻1	R_{P1}	代表从 LED 金属电极到 T_B 测量点的热阻。此热阻会随电路板焊盘、铜箔面积、铝基电路板的散热性能、散热器及动作温度等发生变化。
LED 热阻	$R_{ heta JB}$	代表从 LED 芯片到电路板温度(T_B)测量点的热阻。并且 LED 热阻($R_{\theta JB}$)= LED 单体的热阻($R_{\theta JC}$)+电路板热阻 1 (R_{P1})
电路板热阻 2	R _{P2}	代表散热器方向(三维坐标的 Z 方向)上从 LED 焊接面到铝基电路板为止的热阻合计值。如以下公式所示,铝基电路板的热阻由绝缘层(导热系数、厚度等)决定,因此必须选择适当材质的电路板。 热阻 = 绝缘层厚度/(绝缘层导热系数×面积)
散热材料热阻	R_{C}	代表散热片、散热膏和散热器等的合计热阻。
周围温度	T _A	代表光源模组周围的温度。

3.2 电路板材料

型号 NCSxE17x 的金属电极非常小, 所以对电路板的散热性能要求较高。如果 LED 的输入功率 较大,日亚建议避免使用环氧玻璃布层压板(FR4)、环氧玻璃复合板(CEM3)及导热性能低的 铝基电路板,而应使用导热性能高的铝基电路板。作为参考,使用不同(高、低)导热性能电路 板时的散热示意图如图3和4所示。

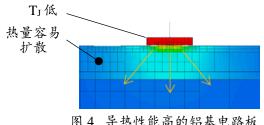


图 4. 导热性能高的铝基电路板

如果将 LED 安装在导热性能低的铝基电路板上,会因为热量不易扩散,导致 LED 的结点温度升 高。而安装在导热性能高的铝基电路板上, LED 发出的热量可以有效地通过铝基电路板散发, 所以 LED 的结点温度会降低。

3.3 日亚推荐焊盘

日亚推荐 NCSxE17x 使用如图 5 所示的的 焊盘。

焊盘的形成方法分为 Solder Mask Defined (以下简称为"SMD")和 Non Solder Mask Defined (以下简称为"NSMD")的两种。 各焊盘的形成方法的特点如表 3 所示。请 根据灯具的用途进行选择。

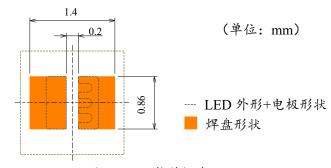


图 5. 日亚推荐焊盘

表 3. 焊盘的形成方法

种类	SMD	NSMD
设计方法	焊盘的形状、位置由阻焊层的形状决 定。	焊盘的形状、位置不由阻焊层决定, 而是 由铜箔自身的形状决定。
外观照片	铜箔 阻焊层	铜箔 阻焊层
安装性	如果阻焊层的涂覆精度差,焊盘的形状、位置会和设计的尺寸不同(可能对安装性有影响)。	即使阻焊层的涂覆精度差,也不会影响焊盘的位置和设计(对安装性的影响小)
散热性	焊盘铜箔的面积大所以散热性好。	焊盘铜箔的面积小所以散热性不好。
用途	重视散热时	高密度安装时

在第4章中将对使用不同绝缘层导热系数、不同焊盘宽度的铝基电路板时的LED热阻进行评价。

4. 热阻

日亚对使用不同导热系数的绝缘层、焊盘宽度的铝基电路板的 LED 热阻($R_{\theta JB}$)进行了测量。另外热阻的测量方法是按照 JESD51 进行的。

4.1 评价用 LED

评价用LED如表4所示。

表 4. 评价用 LED

型号	发光色	色度分档、显色性	正向电流
NCSRE17A	红色	Rp	350mA/700mA
NCSRE17A	亮红色	R021	350mA/700mA
NCSGE17A	绿色	G013	350mA/550mA
NCSGE17A	青柠色	G014	350mA/700mA
NCSCE17A	皇家蓝色	V2	350mA/700mA
NCSBE17A	蓝色	W011	350mA/700mA
NCSAE17A	橙色	Lea	350mA/700mA
NCSWE17A	白色	sm507 R70	350mA/700mA

4.2 评价用电路板

评价用铝基电路板的绝缘层导热系数为1.8、2.7、4.5和5.7W/m·K的4种。详细内容如表5所示。

表 5. 评价用电路板

铝基电路板材料※3	单位	NRA-ES1	NRA-E (3.0)	NRA-E (6.5)	NRA-H6
绝缘层导热系数※4	W/m·K	1.8	2.7	4.5	5.7
绝缘层厚度	μm	120	120	120	120
铜箔厚度※5	μm	35	35	35	35
铝基板厚度	mm	1	1	1	1

- ※3 铝基电路板生产商: 日本 Nippon Rika Group。
- ※4 绝缘层导热系数: 是生产商产品目录中的数值, 日亚并不对其进行保证。
- ※5 铜箔厚度: 对散热性的影响大, 但是考虑到 LED 正负金属电极间的间隔, 选用了厚度 35μm。

4.3 焊盘宽度

电路板焊盘宽度分为 0.5mm (最小)、0.86mm (LED 金属电极尺寸)、1.7mm (LED 外形尺寸)和 5mm (最大)的 4种。详细内容如表 6 所示。

表 6. 焊盘宽度

焊盘铜箔宽度	0.5mm	0.86mm	1.7mm	5mm
焊盘形成方法	NSMD	NSMD	SMD	SMD
焊盘设计图				

4.4 热阻测量结果

◆ 铝基电路板绝缘层导热系数 1.8W/m·K、正向电流 700mA 时的热阻 (Reir)

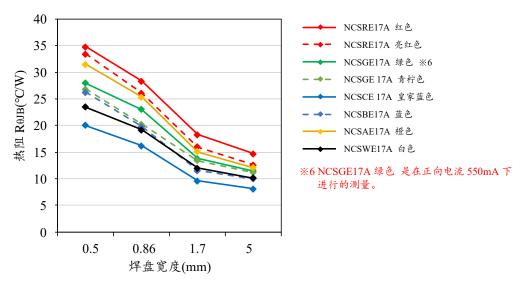


图 6. 绝缘层导热系数 1.8W/m·K、正向电流 700mA 时的热阻 (R_{0JB})

从图 6 的测量结果可以看出,评价 LED 中热阻 $(R_{\theta JB})$ 最大的是 NCSRE17A (红色),最小的是 NCSCE17A (皇家蓝色)。另外所有型号都是焊盘宽度越大热阻越小,因此需要加大散热时应该 在电路板设计中尽量加大焊盘宽度。

◆ 铝基电路板绝缘层的导热系数 5.7W/m·K、正向电流 700mA 时的热阻(R_{θJB})

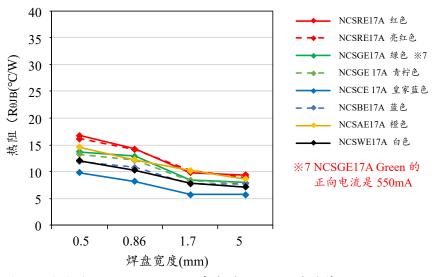


图 7. 绝缘层的导热系数 5.7W/m·K、正向电流 700mA 时的热阻(Rejb)

从图 7 的测量结果可以看出,改用绝缘层导热系数更大(从 $1.8W/m\cdot K$ 改变为 $5.7W/m\cdot K$)的铝基电路板后,所有型号的热阻($R_{\theta JB}$)都有所下降,并且不同宽度焊盘间的热阻差异也有所减少,所以在不能加大焊盘宽度时可以通过使用导热系数更大的绝缘层增加散热。

◆ 本评价中所有型号 LED 的热阻 (R_{θJB})

表 7. 各型号 LED 的热阻 (参考)

◇铝基电路板绝缘层导热系数: 1.8W/m·K

焊盘宽度	0.5mm	0.86mm	1.7mm	5mm	0.5mm	0.86mm	1.7mm	5mm
正向电流		350)mA		700	mA	绿色为 55()mA
NCSRE17A 红色	29.4	24.1	15.3	11.8	34.8	28.3	18.3	14.7
NCSRE17A 亮红色	27.5	21.9	13.7	10.1	33.4	26.1	15.9	12.6
NCSCE17A 皇家蓝色	14.7	11.3	6.9	5.5	20.0	16.2	9.6	8.1
NCSBE17A 蓝色	22.9	17.0	10.0	9.2	26.3	19.8	11.5	10.0
NCSGE17A 绿色※8	24.4	21.7	12.1	10.1	27.9	23.0	13.8	11.5
NCSGE17A 青柠色	24.0	18.6	12.7	10.7	26.9	20.2	13.4	11.2
NCSAE17A 橙色	25.7	20.8	12.9	10.0	31.5	25.4	15.1	12.1
NCSWE17A 白色	20.2	17.1	10.1	8.9	23.5	19.2	12.0	10.2

◇铝基电路板绝缘层导热系数: 2.7W/m·K

焊盘宽度	0.5mm	0.86mm	1.7mm	5mm	0.5mm	0.86mm	1.7mm	5mm
正向电流		350)mA		700	mA ※9	绿色为 55()mA
NCSRE17A 红色	26.0	20.5	13.4	10.8	29.1	23.8	15.3	12.4
NCSRE17A 亮红色	23.8	19.9	12.1	10.3	28.0	23.0	14.5	12.3
NCSCE17A 皇家蓝色	11.5	10.0	8.0	5.7	15.6	13.2	9.1	6.7
NCSBE17A 蓝色	19.6	15.8	8.9	8.4	19.5	16.9	10.1	9.6
NCSGE17A 绿色※9	22.3	18.4	12.0	9.6	24.8	20.8	12.9	10.6
NCSGE17A 青柠色	19.6	16.6	11.1	9.4	22.4	18.3	12.2	10.2
NCSAE17A 橙色	24.4	19.6	11.7	10.8	26.8	22.0	13.4	11.4
NCSWE17A 白色	19.3	16.3	10.1	8.9	21.5	17.8	11.3	9.3

◇铝基电路板绝缘层导热系数: 4.5W/m·K

焊盘宽度	0.5mm	0.86mm	1.7mm	5mm	0.5mm	0.86mm	1.7mm	5mm
正向电流		350)mA		700r	nA ※10	绿色为 55	0mA
NCSRE17A 红色	17.5	15.7	9.6	9.0	19.2	17.6	11.2	10.3
NCSRE17A 亮红色	17.2	15.1	9.1	8.3	20.5	17.9	10.6	10.0
NCSCE17A 皇家蓝色	8.4	7.8	4.7	3.9	11.0	10.4	6.4	5.7
NCSBE17A 蓝色	16.1	13.2	8.7	7.9	15.7	13.5	9.0	8.1
NCSGE17A 绿色※10	15.0	13.1	8.8	8.3	17.2	15.6	10.0	9.0
NCSGE17A 青柠色	14.8	13.3	8.8	7.6	16.6	14.6	9.7	8.8
NCSAE17A 橙色	15.5	13.9	8.9	8.0	18.3	16.3	10.6	9.8
NCSWE17A 白色	14.2	11.7	8.0	6.3	15.1	13.3	8.9	8.6

◇铝基电路板绝缘层导热系数: 5.7W/m·K

		., ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_				
焊盘宽度	0.5mm	0.86mm	1.7mm	5mm	0.5mm	0.86mm	1.7mm	5mm
正向电流		350)mA		7001	nA ※11	绿色为 55()mA
NCSRE17A 红色	15.1	13.2	8.3	7.7	16.8	14.2	9.8	9.4
NCSRE17A 亮红色	13.5	11.8	8.3	7.3	16.1	14.2	10.2	8.9
NCSCE17A 皇家蓝色	7.4	6.5	4.7	4.8	9.8	8.2	5.7	5.7
NCSBE17A 蓝色	10.1	8.9	6.7	7.0	11.9	10.8	7.7	7.8
NCSGE17A 绿色	12.5	11.6	7.5	6.3	13.7	12.9	8.4	8.0
NCSGE17A 青柠色	11.6	10.1	7.2	6.9	13.2	12.2	8.3	7.9
NCSAE17A 橙色	13.4	10.9	8.4	6.7	14.6	12.2	10.2	8.6
NCSWE17A 白色	10.3	9.0	7.0	6.1	12.1	10.3	7.8	7.1

5. 结点温度

5.1 结点温度 TJ 的计算

型号NCSxE17x的结点温度Tj可以用以下公式1计算。

$$T_{J} = T_{B} + R_{\theta J B} \cdot W \quad \cdots \qquad (1)$$

 T_{J} = 结点温度(℃)、 T_{B} = 电路板温度(℃)

 $R_{\theta JB}$ = 从芯片到 T_B 测量点的热阻 (℃/W)

 $W = 输入功率(I_F \times V_F)(W)$

如第 4 章中所记载,不同规格的铝基电路板热阻($R_{\theta JB}$)会有很大差异。如果是要取得 LED 结点温度(T_{I})的大概值可以使用第 4 章的表 7 中的热阻($R_{\theta JB}$)算出。但是请注意此热阻($R_{\theta JB}$)是在日亚评价条件下得出的结果,可能因为客户使用的部材、动作条件和使用环境等不同而发生变化。

如果客户需要对电路板安装状态下的热阻 $(R_{\theta JB})$ 和灯具状态下的 LED 结点温度 (T_J) 进行确认,请和日亚当地营业所联系。

5.2 LED 的最大结点温度

相关 NCSxE17x 的结点温度的绝对最大额定值, 规格书中记载的是 135℃, 但是为了提高 LED 长期使用的可靠性 (光通量下降、色度偏移), 最好不超过 100℃。

另外也应该避免让 LED 焊接部的温度过高,否则可能使 LED 的焊接强度降低,出现锡裂等。 作为参考,日亚产品规格书降额特性中记载的"外壳温度 vs.容许正向电流"特性如图 8 所示,在此特性中外壳温度 T_C 的上限值被设定为 100 $^{\circ}$ $^{\circ}$ $^{\circ}$

例: NCSRE17A (红色)

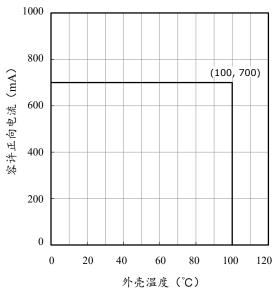


图 8. "外壳温度 vs.容许正向电流"特性

图 8 的结点温度可以根据以下公式 2 计算。

$$T_{J} = T_{C} + R_{\theta JC} \cdot W \cdot \cdot \cdot \cdot (2)$$

 T_{J} = 结点温度(°C)、 T_{c} = 外壳温度(°C) $R_{\theta J C}$ = 从芯片到 T_{c} 测量点的热阻(°C/W) W = 输入功率(I_{F} × V_{F})(W)

如下所示,由外壳温度的上限值100℃计算出的结点温度约为102.1℃。

$$T_J = 100^{\circ}C + 1.0^{\circ}C/W \times (0.7A \times 3V) = 102.1^{\circ}C$$

应用指南

5.3 电路板温度 (TB) 的测量

在电路板温度(TB)的测量中,应该尽量让热电偶的固定位置靠近LED。

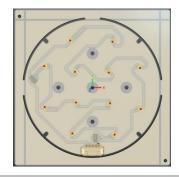
日亚推荐在距离 LED 中心 2.35mm 的位置(热电偶丝的固定点尺寸: φ1.0mm)上安装热电偶。 关于热电偶的固定方法, 通常推荐使用焊接固定, 但是在因为电路板的散热性能好或灯具其他原 因不能使用焊接固定时可以使用焊接外的方法固定。不过应注意无论使用哪种方法电路板温度 (T_B)的测量值都会存在误差, 所以必须事先对其进行验证。

热电偶的固定方法 (例) 如表 8 所示。

表 8. 热电偶固定方法 (例)

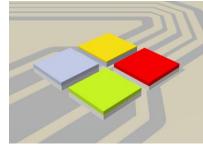
部材种类	焊接(推荐)	粘合剂	固化型导热硅胶
外观照片	A	A A	A A
部材名 成分 生产商	焊锡丝 M705 Sn-3.0Ag-0.5Cu 日本 Senju Mental Industry Co., Ltd 制	Cemedine Super X 2 丙烯酸改性有机硅聚合物 日本 Cemedine Co., Ltd.制	室温固化型导热硅胶 SCV-22 日本 Sunhayato Corp.制
注意事项	避免让焊膏中的助焊剂附着在 LED 的发光面上。 (附着可能导致 LED 的 结点温度升高)。	粘合剂量应该适当。 (粘合剂量过多可能加大测量 结果的误差)。	硅胶量应该适当。 (硅胶量过多可能加大测 量结果的误差)。

6. 温度评价


在对光源模组的温度进行评价时最好使用红外线热像仪。虽然红外线热像仪不能对 LED 的结点温度进行测量,但是可以对 LED 表面温度及电路板的温度分布进行确认。

6.1 光源模组的评价例

将型号 NCSRE17A、NCSGE17A、NCSCE17A 和 NCSWE17A 呈"田"字状安装在电路板上,此配置状态下的光源模组规格和评价结果如表 9 和 10 所示。另外在此评价中使用了两种焊盘铜箔宽度不同的光源模组。


表 9. 光源模组规格(NSMD)

光源模组 LED 配置情况

铝基电路板外形: Φ140mm、厚: 1.0mm 绝缘层导热系数: 2.1W/m·K、厚: 120μm

铜箔厚度: 35µm

※LED 间距为 0.4mm

LED: NCSRE17A 12 粒、NCSGE17A 12 粒 NCSCE17A 12 粒、NCSWE17A 12 粒

电路: 4 电路(1 电路: 6 串联×2 并联)

表 10. 光源模组的评价结果

<u> </u>				
焊盘宽度	0.4mm/0.5mm NSMD	1.7mm SMD		
电路板铜箔配线 (X线检查照片)				
热像仪观察结果 (测量条件) 发射率 0.95 反射温度 20℃	80.0 (S)	EII No. 82.7 °C °C C No. 40.5 °C C No. 50.5		
驱动条件	NCSRE17A 单色亮灯	NCSRE17A 单色亮灯		
正向电流	350mA/LED	350mA/LED		
LED 表面温度	平均 96.3℃	平均 85.6℃		
评价结果	LED 的表面温度高 电路板铜箔配线的温度高	和 NSMD 使用品相比 LED 表面温度约低 10.6℃		

6.2 LED 表面温度

NCSRE17A、NCSGE17A、NCSEE17A 和 NCSWE17A 的表面温度比结点温度更高。这是因为虽然 LED 的主要热源在结点部,但是荧光体层在波长转换过程中也会发生史托克能量损失,从而产生热量。此外由于本产品的荧光体层非常薄,而且距离芯片的传热途径较远,这使荧光体层发出的热量难以散发,导致了 LED 表面温度的升高。有荧光体层 LED 的表面温度如图 9 所示。

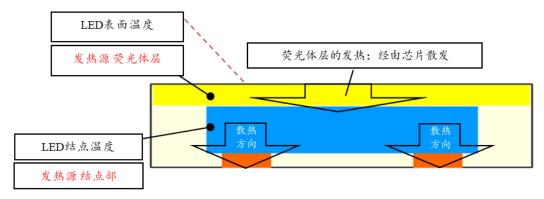


图 9. 有荧光体层 LED 的表面温度

另外 NCSCE17A、NCSBE17A、NCSEE17A-V1L1、NCSGE17A-V1L1 因为没有荧光体层,所以表面温度和结点温度的差异不大。无荧光体层 LED 的表面温度如图 10 所示。

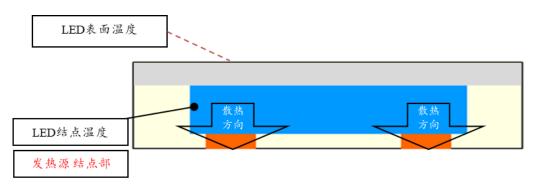


图 10. 无荧光体层 LED 的表面温度

不同型号的 LED 表面温度和结点温度间差异的评价结果如图 11 所示。

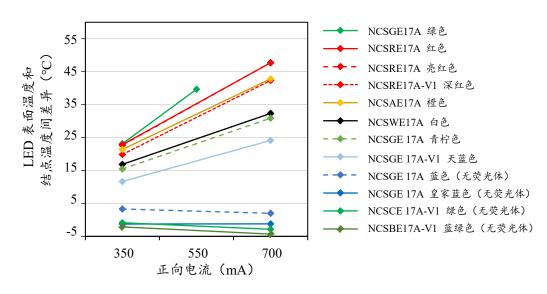


图 11. LED 表面温度和结点温度间的关系(参考)

应用指南

从图 11 中可以看出有荧光体层的 NCSRE17A、NCSGE17A、NCSAE17A、NCSEE17A 和 NCSWE17A 等 LED 的正向电流越大, LED 表面温度和结点温度的差异就越大。

与此相比,没有荧光体层的 NCSCE17A、NCSBE17A、NCSEE17A-V1L1、NCSGE17A-V1L1 即使正向电流加大,表面温度和结点温度的差异也没有太大变化。

另外因为图 11 中的 LED 结点温度和表面温度的关系是在没有使用光学元件(透镜、反光罩等)时的评价结果,所以在实际灯具的使用中, LED 的表面温度还可能受灯具中其他元件的影响升高更大。因此客户应该在灯具的散热设计中留有足够的余地。

6.3 热像仪测量时的注意事项

- · 热像仪的测量值会根据测量仪器、测量条件和测量环境不同出现误差,因此如果使用此数值 进行设计,最好让散热留有一定的余地。
- · 在使用近摄镜头测量时,应该注意热像仪和被照物(LED)间的距离。如果是对光输出大的 LED测量,可能因为 LED 和热像仪间的距离加大光的影响,使测量值的误差增加(表 11)。
- · 最好让 LED 的表面温度在 150°C以下(※12)。如果 LED 的表面温度过高,可以判断出 LED 受到的热负荷过大,此时最好再次对电路板、焊盘规格、散热器、驱动电流等进行确认。
- · 因为 LED 的表面温度高于结点温度, 所以应该避免在灯具中使用耐热性能低的光学元件(透镜、反光罩等), 还应该让光学元件和 LED 之间保持一定的距离, 并进行充分的验证。

表 11. NCSWE17A 正向电流 700mA 时评价结果

THE PARTY OF THE P				
镜头种类	标准镜头	近摄镜头1	近摄镜头 2	
测量环境				
测量距离	220mm	100mm	50mm	
焦距倍率	2 倍	1.4 倍	1 倍	
测量结果照片	El1 Max 77.3 °C °C 100.0 Mm 39.0 °C Average 58.2 °C Mm 36.6 °C Average 36.9 °C FLIR 25.0	111 No. 72.4 °C C 100.0 No. 22.6 °C 100.0 Antorio S. 31 °C No. 32.6 °C N	OPLIN	
LED 表面温度 (max.)	77.3°C	78.4°C	88.9°C↑	
电路板温度 (max.)	37.4°C	37.6°C	40.9°C↑	
备注	_	_	透镜反射光(LED 辐射热)导致温度上升	

※3 日亚建议型号 NCSGE17A、NCSGE17A-V1(色度分档 G013)的表面温度不超过 135℃。

7. 最后

本应用指南中介绍的内容都是 NCSxE17x 散热设计中必须注意的重要项目。希望客户在 LED 灯具的散热设计中参考本应用指南中的内容,选择适当的电路板及散热材料,并在实际的灯具模组状态及使用条件下进行充分验证。

免责声明

本应用指南由日亚提供,是日亚制作及管理的技术参考资料。

在使用本应用指南时, 应注意以下几点。

- · 本应用指南中的内容仅供参考, 日亚并不对其做任何保证。
- · 本应用指南中记载的信息只是例举了本产品的代表性能和应用例,并不代表日亚对日亚及 第三者的知识产权及其他权利进行保证,也不代表同意对知识产权授权。
- · 关于本应用指南内容,虽然日亚有注意保证其正确性,但是日亚仍然不能对其完整性,正 确性和有用性进行保证。
- · 因本应用指南的利用、使用及下载等所受的损失, 日亚不负任何责任。
- · 本应用指南的内容可能被日亚修改,并且可能在变更前、后都不予通告。
- · 本应用指南的信息的著作权及其他权利归日亚或许可日亚使用的权利人所有。未经日亚事 先书面同意,禁止擅自转载、复制本应用指南的部分或所有内容等(包括更改本应用指南 内容后进行转载、复制等)。